A Fault Diagnosis Method of Train Wheelset Rolling Bearing Combined with Improved LMD and FK
نویسندگان
چکیده
منابع مشابه
A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملImproved Ensemble Empirical Mode Decomposition for Rolling Bearing Fault Diagnosis
Rolling bearing is an important part in mechanical system and faults occur frequently with vibration noise. Empirical mode decomposition (EMD) is a tool for nonlinear and non-stationary signals analysis. However, the major drawbacks of EMD are mode mixing problem, ensemble empirical mode decomposition (EEMD) provides a new tool for signal analysis, and it is an improved technique of EMD. In ord...
متن کاملMulti-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis
Based on the combination of improved Local Mean Decomposition (LMD), Multi-scale Permutation Entropy (MPE) and Hidden Markov Model (HMM), the fault types of bearings are diagnosed. Improved LMD is proposed based on the self-similarity of roller bearing vibration signal by extending the right and left side of the original signal to suppress its edge effect. First, the vibration signals of the ro...
متن کاملA train bearing fault detection and diagnosis using acoustic emission
Article history: Received 6 September, 2015 Accepted 9 December 2015 Available online 9 December 2015 This paper provides a method of acoustic emission (AE) technique to detect a train bearing fault of tapered bearing unit (TBU). An approach is to utilize acoustic emission signals which were captured from piezoelectric transducer and processed using Fourier transform. The transformed signals ma...
متن کاملStudy on A Fault Diagnosis Method of Rolling Element Bearing Based on Improved ACO and SVM Model
The vibration signal is nonstationary and it is difficult to acquire the sample with typical fault. An improved ACO algorithm based on adaptive control parameters is introduced into SVM model to propose a new fault diagnosis (IMASFD) method in this paper. In the IMASFD method, the EMD method is used to decompose fault vibration signal into IMF components, the energy of IMF components is selecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Sensors
سال: 2019
ISSN: 1687-725X,1687-7268
DOI: 10.1155/2019/6207847